

CHALMERS work in Train Aerodynamics within Gröna Tåget

Siniša Krajnović
Vehicle Aerodynamics Laboratory
http://www.tfd.chalmers.se/~sinisa

CHALMERS

Chalmers worked with two projects

- Stability of high-speed trains in wind gusts
- The aim of the project was to develope numerical techniques that enable study of trains in wind gusts
- Aerodynamic shape optimization of trains
- The aim of the project was to develope a robust, efficient and automatic algorithm that can do multiobjective shape optimization of trains.

Crosswind stability of trains

Obtaining aerodynamic loads and moments for inherently transient scenarios

- Full-scale vehicle tests: difficult to control and measure, expensive
- Wind tunnel test: difficult to obtain correct boundary conditions
- Numerical simulations: How can we obtain correct boundary conditions?

Examples of flow scenarios

- Train is exiting a tunnel under the influence of a wind gust.
- Two trains passing by each other.
- Train traveling in a curve under the influence of a cross wind.

DES of the Flow Around an ICE2 Train

Model of the wind gust

Constructed using experiments of Ryan and Dominy (2000).

$$V(t) = B_1 t^{B_2 t} + B_3 erf(B_4 t) + 1.5 e^{B_5 t} \sin(\Omega t)$$

Propagation of the wind gust

Development of the flow

DES of the flow around a high-speed train leaving a tunnel under the influence of a wind gust, ©Sinisa Krajnovic 0.015 Chalmers University of Technology Rolling moment moment (Nm) 2000000 2000000 Yaving moment 1e+06 0 Time Pitching moment (m) 3e+06 Pitching moment (0 2 3 Time 1e+06 Rolling moment = 14242.69 (Nm) Pitching moment = -225953.12 (Nm) 0 Yawing moment = 91354.36 (Nm) Time

What is missing?

- There is no tunnel represented in these simulation. What is implications of this simplification?
- Only few flow scenarios can be simulated using this methodology.
- How should we do? We must have moving vehicles!

Train exiting a tunnel

Geometry of the computational domain of the high-speed train exiting the tunnel.

Train exiting a tunnel

Deformation of the computational grid for the train exiting the tunnel at three different times.

Two trains passing by each other

Set-up of the two trains passing by each other. b) Computational grid around a train.

Two trains passing by each other

- two trains passing by each other at a speed of 67 m/s, 70 m/s or 73 m/s per train.
- Compressible simulations

Two trains passing by each other

- Deformation of the computational grid for the trains passing by at three different times.
- The movement of the computational cells in the undeformed regions is described with a linear function

 $x=+-\Lambda+-vt$, Λ is the original displacement from the origin

Aerodynamic shape optimization

Task

Minimize rolling and yawing moments of a train

Programs

- AVL FIRE® Mesh creation and CFD simulations
- Sculptor Mesh deformation
- modeFrontier Optimization

The Optimization Process

Computational Domain

Mesh deformation in Sculptor

Creation of ASD volume

- modeFrontier and Sculptor run locally
- AVL FIRE® runs on cluster
- Each design is restarted from original train

Optimization algorithm, Evolution Strategy (ES)

DOE Points	Concurrent Designs	Size of Generation	Generations	Simulation Time [h]	CPU's	Total CPU Time [h]
16	8	16	5	5	48	18 000

Results

	Δ_{1}	Δ_{2}	My [Nm]	%	Mr [Nm]	%
Original			0.98		0.13	
DOE	0.00298	-0.0036	1.01	3.3	0.11	-21.3
ES	0.00364	-0.004	1.06	7.8	0.10	-33.4

The lessons learned and the impact of this research

- The new numerical technique is capable of studying different wind-gust-like situations.
- Examples of situations that we can study are:
- Influence of atmospheric wind gusts on trains
- Passing trains
- Train passing a platform
- The Aerodynamic shape optimization algorithm is capable of multiobjective shape ptimization of trains. Better algorithms are needed as the computational effort limits number of design parameters.

The impact of this research

- We have been internationaly recognized for this research.
- Our crosswind work has led to cooperation project on wind gust influence on trains with Railway Technical Research Institute (RTRI) in Tokyo.
- Much of this research has been performed by involving BSc and MSc student This has increased interest of students in this research.
- Large number of scientific papers, MSc thesis, BSc thesis and popularscientific pblications.